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and Universidad de Sevilla, Spain3. 

OVERVIEW 

In this paper we present results from research on students’ reasoning about the 
normal distribution in a university-level introductory course. One hundred and 
seventeen students took part in a teaching experiment based on the use of computers 
for nine hours, as part of a 90-hour course. The teaching experiment took place 
during six class sessions. Three sessions were carried out in a traditional classroom, 
and in another three sessions students worked on the computer using activities 
involving the analysis of real data. At the end of the course students were asked to 
solve three open-ended tasks that involved the use of computers. Semiotic analysis 
of the students’ written protocols as well as interviews with a small number of 
students were used to classify different aspects of correct and incorrect reasoning 
about the normal distribution used by students when solving the tasks. Examples of 
students’ reasoning in the different categories are presented. 

THE PROBLEM 

One problem encountered by students in the introductory statistics course at 
university level is making the transition from data analysis to statistical inference. 
To make this transition, students are introduced to probability distributions, with 
most of the emphasis placed on the normal distribution. The normal distribution is 
an important model for students to learn about and use for many reasons, such as: 
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• Many physical, biological, and psychological phenomena can be reasonably 
modeled by this distribution such as physical measures, test scores and 
measurement errors. 

• The normal distribution is a good approximation for other distributions—
such as the binomial, Poisson, and t distributions—under certain conditions. 

• The Central Limit Theorem assures that in sufficiently large samples the 
sample mean has an approximately normal distribution, even when samples 
are taken from nonnormal populations. 

• Many statistical methods require the condition of random samples from 
normal distributions. 

 
We begin by briefly describing the foundations and methodology of our study. 

We then present results from the students’ assessment and suggest implications for 
the teaching of normal distributions. For additional analyses based on this study see 
Batanero, Tauber, and Meyer (1999) and Batanero, Tauber, and Sánchez (2001). 

THE LITERATURE AND BACKGROUND 

Previous Research 

There is little research investigating students’ understanding of the normal 
distribution, and most of these studies examine isolated aspects in the understanding 
of this concept. The first pioneering work was carried out by Piaget and Inhelder 
(1951), who studied children’s spontaneous development of the idea of stochastic 
convergence. The authors analyzed children’s perception of the progressive 
regularity in the pattern of sand falling through a small hole (in the Galton apparatus 
or in a sand clock). They considered that children need to grasp the symmetry of all the 
possible sand paths falling through the hole, the probability equivalence between the 
symmetrical trajectory, the spread and the role of replication, before they are able to 
predict the final regularity that produces a bell-shaped (normal) distribution. This 
understanding takes place in the formal operations stage (13- to 14-year-olds). 

Regarding university students, Huck, Cross, and Clark (1986) identified two 
erroneous conceptions about normal standard scores: On the one hand, some students 
believe that all standard scores will always range between –3 and +3, while other 
students think there is no restriction on the maximum and minimum values in these 
scores. Each of those beliefs is linked to a misconception about the normal 
distribution. The students who think that z-scores always vary from –3 to + 3 have 
frequently used either a picture or a table of the standard normal curve, with this 
range of variation. In a similar way, the students who believe that z-scores have no 
upper or lower limits have learned that the tails of the normal curve are asymptotic 
to the abscissa; thus they make an incorrect generalization, because they do not 
notice that no finite distribution is exactly normal. 
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For example, if we consider the number of girls born out of 10 newborn babies, 
this is a random variable X, which follows the binomial distribution with n = 10 and 
p = 0.5. The mean of this variable is np = 5 and the variance is npq = 2.5. So the 
maximum z-score that could be obtained from this variable is zmax = (10 – 5)/√2.5 = 
3.16. Thus we have a finite limit, but it is greater than 3. 

In related studies, researchers have explored students’ understanding of the Central 
Limit Theorem and have found misconceptions regarding the normality of sampling 
distributions (e.g., Vallecillos, 1996, 1999; Méndez, 1991; delMas, Garfield, & 
Chance, 1999). Wilensky (1995, 1997) examined student behavior when solving 
problems involving the normal distribution. He defined epistemological anxiety as 
the feeling of confusion and indecision that students experience when faced with the 
different paths for solving a problem. In interviews with students and professionals 
with statistical knowledge, Wilensky asked them to solve a problem by using 
computer simulation. Although most subjects in his research could solve problems 
related to the normal distribution, they were unable to justify the use of the normal 
distribution instead of another concept or distribution, and showed a high 
epistemological anxiety. 

Meaning and Understanding of Normal Distributions 
in a Computer-Based Course 

Our research is based on a theoretical framework about the meaning and 
understanding of mathematical and statistical concepts (Godino, 1996; Godino & 
Batanero, 1998). This model assumes that the understanding of normal distributions 
(or any other concept) emerges when students solve problems related to that 
concept. The meaning (understanding) of the normal distribution is conceived as a 
complex system, which contains five different types of elements: 

 
1. Problems and situations from which the object emerges. In our teaching 

experiments, students solved the following types of problems: (a) fitting a 
curve to a histogram or frequency polygon for empirical data distributions, 
(b) approximating the binomial or Poisson distributions, and (c) finding the 
approximate sampling distribution of the sample mean and sample 
proportion for large samples (asymptotic distributions). 

2. Symbols, words, and graphs used to represent or to manipulate the data and 
concepts involved. In our teaching, we considered three different types of 
representations: 
a) Static paper-and-pencil graphs and numerical values of statistical 

measures, such as histograms, density curves, box plots, stem-leaf plots, 
numerical values of averages, spread, skewness, and kurtosis. These 
might appear in the written material given to the students, or be obtained 
by the students or teacher. 

b) Verbal and algebraic representations of the normal distribution; its 
properties or concepts related to normal distribution, such as the words 
normal and distribution; the expressions density curve, parameters of the 
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normal distribution, the symbol N (�, �), equation of density function, 
and so forth. 

c) Dynamic graphical representations on the computer. The Statgraphics 
software program was used in the teaching. This program offers a variety 
of simultaneous representations on the same screen which are easily 
manipulated and modified. These representations include histograms, 
frequency polygons, density curves, box plots, stem-leaf plots, and 
symmetry and normal probability plots. The software also allows 
simulation of different distribution, including the normal distribution. 

3. Procedures and strategies to solve the problem. Beyond the descriptive 
analyses of the variables studied in the experiment, the students were 
introduced to computing probabilities under the curve, finding standard 
scores, and critical values (computed by the computer or by hand). 

4. Definitions and properties. Symmetry and kurtosis: relative position of the 
mean, median and mode, areas above and below the mean, probabilities 
within one, two and three standard deviations, meanings of parameters, 
sampling distributions for means and proportions, and random variables. 

5. Arguments and proofs. Informal arguments and proofs made using graphical 
representation, computer simulations, generalization, analysis, and synthesis. 

SUBJECTS AND METHOD 

Sample and Teaching Context 

The setting of this study was an elective, introductory statistics course offered by 
the Faculty of Education, University of Granada. The instruction for the topic of 
normal distributions was designed to take into account the different elements of 
meaning as just described. Taking the course were 117 students (divided into 4 
groups), most of whom were majoring in Pedagogy or Business Studies. Some 
students were from the School of Teachers Training, Psychology, or Economics. 

At the beginning of the course students were given a test of statistical reasoning 
(Garfield, 1991) to assess their reasoning about simple statistical concepts such as 
averages or sampling, as well as to determine the possible existence of 
misconceptions. An examination of students’ responses on the statistical reasoning 
test revealed some errors related to sampling variability (representativeness 
heuristics), sample bias, interpretation of association, and lack of awareness of the 
effect of atypical values on averages. There was a good understanding of 
probability, although some students showed incorrect conceptions about random 
sequences. 

Before starting the teaching of the normal distribution, the students were taught 
the foundations of descriptive statistics and some probability, with particular 
emphasis on helping them to overcome the biases and errors mentioned. Six 1.5-
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hour sessions were spent teaching the normal distribution, and another 4 hours were 
spent studying sampling and confidence intervals. Students received written material 
specifically prepared for the experiment and asked to read it beforehand. Half of 
these sessions were carried out in a traditional classroom, where the lecturer 
introduced the normal distribution as a model to describe empirical data, using a 
computer with projection facility. Three samples (n = 100, 1,000, and 10,000 
observations) of intelligence quotient (IQ) scores were used to progressively show 
the increasing regularity of the frequency histogram and polygon, when increasing 
the sample size. The lecturer also presented the students with written material, posed 
some problems to encourage the students to discover for themselves all the elements 
of meaning described in section 3.2, and guided student discussion as they solved 
these problems. 

The remaining sessions were carried out in a computer lab, where pairs of 
students worked on a computer to solve data analysis activities, using examples of 
real data sets from students’ physical measures, test scores, and temperatures, which 
included variables that could be fitted to the normal distribution and other variables 
where this was not possible. Activities included checking properties such as 
unimodality or skewness; deciding whether the normal curve provided a good fit for 
some of the variables; computing probabilities under the normal curve; finding 
critical values; comparing different normal distributions by using standardization; 
changing the parameters in a normal curve to assess the effect on the density curve 
and on the probabilities in a given interval; and solving application problems. 
Students received support from their partner or the lecturer if they were unable to 
perform the tasks, and there was also collective discussion of results. 

Assessing Students’ Reasoning about the Normal Distribution 

At the end of the course students were given three open-ended tasks, to assess 
their reasoning about the normal distribution as part of a final exam that included 
additional content beyond this unit. These questions referred to a data file students 
had not seen before, which included qualitative and quantitative (discrete and 
continuous) variables (See Table 1). The students worked alone with the 
Statgraphics program, and they were free to solve the problem using the different 
tools they were familiar with. 

Each problem asked students to complete a task and to explain and justify their 
responses in detail, following guidelines by Gal (1997), who distinguished two types 
of questions to use when asking students to interpret statistical information. Literal 
reading questions ask students for unambiguous answers—they are either right or 
wrong. In contrast, to evaluate questions aimed at eliciting students’ ideas about 
overall patterns of data, we need information about the evidential basis for the 
students’ judgments, their reasoning process, and the strategy they used to relate 
data elements to each other. The first type of question was taken into account in a 
questionnaire with 21 items, which was also given to the students in order to assess 
literal understanding for a wide number of elements of the normal distribution 
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(Batanero et al., 2001). The second type of question considered by Gal (1997) was 
considered in the following open tasks given to students. 

 
Task 1 
In this data file, find a variable that could be fitted by a normal distribution. Explain 
your reasons for selecting that variable and the procedure you have used. 
 
In this task the student is asked to discriminate between variables that can be 

well fitted to a normal distribution and others for which this is not possible. In 
addition to determining the student’s criteria when performing the selection (the 
properties they attribute to normal distributions), we expected students to analyze 
several variables and use different approaches to check the properties of the different 
variables to determine which would best approximate a normal distribution. We also 
expected students to synthesize the results to obtain a conclusion from all their 
analyses. We hoped that student responses to this task would reveal their reasoning. 

 
Task 2 
Compute the appropriate values of parameters for the normal distribution to which 
you have fitted a variable chosen in question 1. 
 
In this question the students have to remember what the parameters in a normal 

distribution (mean and variance) are. We also expected them to remember how to 
estimate the population mean from the sample mean and to use the appropriate 
Statgraphic program to do this estimation. Finally, we expected the students to 
discriminate between the ideas of statistics (e.g., measures based on sample data) 
and parameters (e.g., measures for atheoretical population model). 

 
Task 3 
Compute the median and quartiles for the theoretical distribution you have 
constructed in Task 2. 
 
The aim is to evaluate the students’ reasoning about the ideas of median and 

quartiles for a normal distribution. Again, discrimination between empirical data 
distribution and the theoretical model used to fit these data is needed. We expect the 
student to use the critical value facility of Statgraphics to find the median and 
quartiles in the theoretical distribution. Those students who do not discriminate will 
probably compute the median and quartile from the raw empirical data with the 
summary statistics program. 

The three tasks just described were also used to evaluate the students’ ability to 
operate the statistical software and to interpret its results. Since the students were 
free to solve the tasks using any previous knowledge to support their reasoning, we 
could evaluate the correct or incorrect use of the different meaning elements 
(representations, actions, definitions, properties, and arguments) that we defined 
earlier and examine how these different elements were interrelated. 

Each student worked individually with the Statgraphics and produced a written 
report using the word processor, in which they included all the tables and graphs 
needed to support their responses. Students were encouraged to give detailed 
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reasoning. Once the data were collected, the reports were printed and we made a 
content analysis. We identified which elements of meaning each student used 
correctly and incorrectly to solve the tasks. 

In the next section we provide a global analysis for each question and then 
describe the elements of meaning used by the students. 

RESULTS AND ANALYSIS 

Students’ Perception of Normality 

In Table 1, we include the features of variables in the file and the frequency and 
percentage of students who selected each variable in responding to the first question. 
The normal distribution provided a good fit for two of these variables: Time to run 
30 m (December) and Heartbeats after 30 press-ups. The first variable, Time to run 
30 m, was constructed by simulating a normal continuous distribution. Normality 
can be checked easily in this variable from its graphical representation; the skewness 
and kurtosis coefficient were very close to zero, although the mean, median, and 
mode did not exactly coincide. Heartbeats after 30 press-ups was a discrete 
variable; however, its many different values, its shape, and the values of its different 
parameters suggested that the normal distribution could provide an acceptable fit. 

 

Table 1. Description of the variables that students considered to fit a normal distribution well 

Variable Variable Features 
 Variable type Skewness Kurtosis Mean, median, 

and mode 

Students 
choosing this 
variable (%) 

Age Discrete; three 
different values 

0 –0.56 13, 13, 13 27 (23.1) 

Height Continuous 
Multimodal 

0.85 2.23 156.1, 155.5, † 26 (22.2) 

Heartbeats after 
30 press-ups* 

Discrete; many 
different values 

0.01 –0.19 123.4, 122, 122 37 (31.6) 

Time spent to run 
30 m.(Dec.)*  

Continuous 0.23 –0.42 4.4, 4.4, 5.5 12 (10.3) 

Weight Continuous 
Atypical values 

2.38 9.76 48.6, 46, 45 4 (3.4) 

Heartbeats at rest Discrete; many 
different values 

0.2 –0.48 71.4, 72, 72 6 (5.2) 

Time spent to run 
30 m. (Sep.) 

Continuous 2.4 12.2 5.3, 5.2, 5 4 (3.4) 

No answer     9 (7.2) 
* Correct answer. The normal distribution is a good approximation for these variables 
† Although Height had in fact three modes: 150, 155, 157, that were visible from the stem plot, this was 
noticeable only from the histogram with specific interval widths. 
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The variable Height, despite being symmetric, had kurtosis higher than expected 
and was multimodal, though this was noticeable only by examining a stem-and-leaf 
plot or histogram of the data. 

Some of these students confused the empirical data distribution for Age (Fig. 1a) 
with the theoretical distribution they fitted to the data. In Figure 1b the data 
frequency histogram for Age and a superimposed theoretical normal curve are 
plotted. Some students just checked the shape of the theoretical density curve (the 
normal curve with the data mean and standard deviation) without taking into account 
whether the empirical histogram approached this theoretical curve or not. 

 

 
Figure 1. (a) Empirical density curve for Age (b) Theoretical normal curve fitted to Age. 

Twenty-two percent of students selected a variable with high kurtosis (Height). 
In the following example, while the student could perceive the symmetry from the 
graphical representation of data, this graph was however unproductive as regards the 
interpretation of the standard kurtosis coefficient (4.46) that was computed by the 
student. The student did not compute the median and mode. We assume he visually 
perceived the curve symmetry and from this property he assumed the equality of 
mean, median, and mode. 

 
Example 2 
“I computed the mean (156.1) and standard deviation (8, 93) and they approach those 
from the normal distribution. Then I represented the data (Figure 2) and it looks very 
similar to the normal curve. The values of mean, median and mode also coincide. Std 
Kurtosis = 4.46” (Student 2). 
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Figure 2. Density trace for Height. 

Finding the Parameters 

Table 2 displays the students’ solutions to question 2. Some students provided 
incorrect parameters or additional parameters such as the median that are not needed 
to define the normal distribution. In Example 3, the student confuses the tail areas 
with the distribution parameters. In Example 4, the student has no clear idea of what 
the parameters are and he provides all the summary statistics for the empirical 
distribution. 

 
Example 3 
“These are the distribution parameters for the theoretical distribution I fitted to the 
variable pulsation at rest: 
area below 98.7667 = 0.08953 
area below 111.113 = 0.25086 
area below 123.458 = 0.5” (Student 3) 
 
Example 4 
“Count=96, Average = 123.458, Median = 122.0, Mode = 120.0, Variance = 337.682,  
Standard deviation = 18.3761, Minimum = 78.0, Maximum = 162.0, Range = 84.0,  
Skewness = 0.0109784, Stnd. Skewness = 0.043913, Kurtosis = –0.197793, Stnd. 
Kurtosis = –0.395585, Coeff. of variation = 14.8845%, Sum = 11852.0” (Student 4). 
 
These results suggest difficulties in understanding the idea of parameter and the 

difference between theoretical and empirical distributions. 
 

Table 2. Frequency and percentage of responses in computing the parameters 

Response Number and Percentage 
Correct parameters 
Incorrect or additional parameters 
No answer 

60 (51) 
18 (15) 
39 (33) 
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Computing Percentiles in the Theoretical Distribution 

Table 3 presents a summary of students’ solutions to question 3. About 65% of 
the students provided correct or partly correct solutions in computing the median 
and quartiles. However, few of them started from the theoretical distribution of 
critical values to compute these values. Most of the students computed the quartiles 
in the empirical data, through different options such as frequency tables or statistical 
summaries; and a large proportion of students found no solution. In the following 
example the student is using the percentiles option in the software, which is 
appropriate only for computing median and quartiles in the empirical distribution. 
He is able to relate the idea of median to the 50th percentile, although he is unable to 
relate the ideas of quartiles and percentiles. Again, difficulties in discriminating 
between the theoretical and the empirical distribution are noticed. 

 
Example 5 
“These are the median and quartiles of the theoretical normal distribution for Age. 
The median is 13. Percentiles for Age: 1.0% = 12.0, 5.0% = 12.0, 10.0% = 12.0, 
25.0% = 13.0, 50.0% = 13.0, 75.0% = 13.0, 90.0% = 14.0, 95.0% = 14.0,  
99.0% = 14.0” (Student 1) 
 

Table 3. Frequency and percentages of students’ solutions classified by type of distribution 

Type of distribution used  
Theoretical Empirical None 

Correct  21 (17.9) 29 (24.8)  
Partly correct 9 (7.7) 14 (12.0) 1 (0.9) 
Incorrect 2 (1.7) 17 (14.5) 4 (3.4) 
No solution   20 (17.1) 

 

Students’ Reasoning and Understanding of Normal Distribution 

Besides the percentage of correct responses to each question, we were interested 
in assessing the types of knowledge the students explicitly used in their solutions. 
Using the categorization in the theoretical framework we described in Section 2, we 
analyzed the students’ protocols to provide a deeper picture of the students’ 
reasoning and their understanding of normal distributions. Four students were also 
interviewed after they completed the tasks. They were asked to explain their 
procedures in detail and, when needed, the researcher added additional questions to 
clarify the students’ reasoning in solving the tasks. In this section we analyze the 
results, which are summarized in Table 4 and present examples of the students’ 
reasoning in the different categories. 
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Symbols and Representations 

Many students in both groups correctly applied different representations, with a 
predominance of density curves, and a density curve superimposed onto a 
histogram. Their success suggests that students were able to correctly interpret these 
graphs, and could find different properties of data such as symmetry or unimodality 
from them as in Example 6, where there is a correct use of two graphs to assess 
symmetry. 

 
Example 6 
“You can see that the distribution of the variable weight is not symmetrical, since the 
average is not in the centere of the variable range (Figure 3). The areas over and 
below the centre are very different. When comparing the histogram with the normal 
density curve, this skews to the left” (Student 5). 
 

 
Figure 3. Histogram and density trace for Weight. 

Among numerical representations, the use of parameters (mean and standard 
deviation) was prominent, in particular to solve task 2. Statistical summaries were 
correctly applied when students computed the asymmetry and kurtosis coefficients, 
and incorrectly applied when they computed the median and quartiles, since in that 
question the students used the empirical distribution instead of the theoretical curve 
(e.g., in Example 5). Few students used frequency tables and critical values. We 
conclude that graphical representations were more intuitive than numeric values, 
since a graph provides much more information about the distribution, and the 
interpretation of numerical summaries requires a higher level of abstraction. 

Actions 

The most frequent action was visual comparison (e.g., Examples 2, 6), although 
it was not always correctly performed (such as in Example 2, where the student was 
unable to use the graph to assess the kurtosis). A high percentage of students 
correctly compared the empirical density correctly with the theoretical normal 
density (e.g., Example 6). However, 40% of the students confused these two curves. 
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Table 4. Frequency of main elements of meaning used by the students in solving the tasks 

Elements of Meaning Correct Use Incorrect Use 
Symbols and Representations 

Graphical representations 
  

Normal density curve 45 (38.5)  1 (0.9) 
Over imposed density curve and histogram 30 (25.6)  
Normal probability plot  6 (5.1)  
Cumulative density curve  2 (1.7)  
Histogram 37 (31.6)  
Frequency polygon 12 (10.3)  
Box plot  2 (1.7)  
Symmetry plot  1 (0.9)  

Numerical summaries   
Critical values 29 (24.8)  4 (3.4) 
Tail areas  3 (2.6)  5 (4.3) 
Mean and standard deviation (as parameters in the 
distribution 48 (41.0)  3 (2.6) 

Goodness of fit test  2 (1.7)  2 (1.7) 
Steam-leaf  5 (4.3)  
Summaries statistics 59 (50.4) 47 (40.2) 
Frequency tables 26 (22.2)  
Percentiles  9 (7.7)  9 (7.7) 

Actions   

Computing the normal distribution parameters 50 (42.7) 18 (15.4) 
Changing the parameters 10 (8.5)  2 (1.7) 
Visual comparison 56 (47.9) 49 (41.9) 
Computing normal probabilities 13 (11.1)  1 (0.9) 
Finding critical values 28 (23.9) 68 (58.1) 
Descriptive study of the empirical distribution 39 (33.3)  8 (6.8) 
Finding central interval limits  14 (12)  

Concepts and properties 
  

Symmetry of the normal curve 40 (34.2) 13 (11.1) 
Mode, Unimodality in the normal distribution 32 (27.4) 16 (13.7) 
Parameters of the normal distribution 51 (46.3) 16 (13.7) 
Statistical properties of the normal curve 27 (26.1)  3 (2.6) 
Proportion of values in central intervals 13 (11.1)  1 (0.9) 
Theoretical distribution  48 (41.0) 50 (42.7) 
Kurtosis in the normal distribution; kurtosis coefficients 27 (26.1)  1 (0.9) 
Variable: qualitative, discreet, continuous  50 (42.7) 65 (55.6) 
Relative position of mean, median, mode in a normal 
distribution 35 (29.9)  5 (4.3) 

Skewness and standard skewness coefficients 34 (29.1)  1 (0.9) 
Atypical value  5 (4.3)  
Order statistics: quartiles, percentiles 32 (27.4) 63 (53.8) 
Frequencies: absolute, relative, cumulative 13 (11.1)  

Arguments 
  

Checking properties in isolated cases 18 (15.4)  3 (2.6) 
Applying properties 58 (49.6)  7 (6.0) 
Analysis 32 (27.4)  5 (4.3) 
Graphical representation 58 (49.6) 36 (30.8) 
Synthesis 26 (22.2)  4 (3.4) 
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For example, regarding the variable of Age (Figure 1a), the empirical density curve 
is clearly nonnormal (since there is no horizontal asymptote). The students who, 
instead of using this empirical density, compared the histogram with the normal 
theoretical distribution (Figure 1b) did not perceive that the histogram was not well 
fitted to the same, even when this was clearly visible in the graph. 

A fair number of students correctly computed the parameters, although a large 
percentage made errors in computing the critical values for the normal distribution 
(quartiles and median, as in Example 5). Even when the computer replaces use of 
the normal distribution tables, it does not solve all the computing problems, since 
the students had difficulties in understanding the idea of critical values and in 
operating the software options. Finally, some students performed a descriptive study 
of data before fitting the curve. 

Concepts and Properties 

Students correctly used the different specific properties of the normal 
distribution as well as the definition of many related concepts. The most common 
confusion was thinking that a discrete variable with only three different values was 
normal (e.g., Examples 1, 5). This was usually because students were unable to 
distinguish between the empirical and the theoretical distribution. Other authors 
have pointed out the high level of abstraction required to distinguish between model 
and reality, as well as the difficulties posed by the different levels in which the same 
concept is used in statistics (Schuyten, 1991; Vallecillos, 1994). 

An interesting finding is that very few students used the fact that the proportion 
of cases within one, two, and three standard deviations is 68%, 95%, and 99%, even 
when we emphasized this property throughout the teaching. This suggests the high 
semiotic complexity required in applying this property where different graphical and 
symbolic representations, numerical values of parameters and statistics, concepts 
and properties, and actions and arguments need to be related, as shown later in 
Example 7. 

The scant number of students who interpreted the kurtosis coefficient, as 
compared with the application of symmetry and unimodality, is also revealing. 
Regarding the parameters, although most students used this idea correctly, errors 
still remain. Some students correctly compared the relative position of the measures 
of central position in symmetrical and asymmetrical distributions, although some of 
them just based their selection on this property and argued it was enough to assure 
normality. 

Arguments 

The use of graphical representations was predominant in producing arguments. 
In addition to leading to many errors, this also suggests the students’ difficulty in 
producing high-level arguments such as analysis and synthesis. Most students just 
applied or checked a single property, generally symmetry. They assumed that one 
necessary condition was enough to assure normality. This is the case in Example 7, 
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where the student correctly interprets symmetry from the symmetry plot and then 
assumes this is enough to prove normality. 

 
Example 6 
“We can graphically check the symmetry of Time spent to run 30 Mts. in December 
with the symmetry plot (Figure 4), as we see the points approximately fit the line; 
therefore the normal distribution will fit these data” (Student 6). 

 
Figure 4. Symmetry plot. 

In other cases the students checked several properties, although they forgot to 
check one of the conditions that is essential for normality, such as in the following 
interview, where the student studied the type of variable (discrete, continuous), 
unimodality, and relative position of mean, median and mode. However, he forgot to 
assess the value of the kurtosis coefficient, which is too high for a normal 
distribution (Student 7): 

 
Teacher: In the exam you selected Time to run 30 Mts. in December as a normal 

distribution. Why did you choose that variable? 
Student: I first rejected all the discrete variables since you need many different 

values for a discrete variable to be well fitted to a normal distribution. 
Since the two variables Time to run 30 Mts. in December and Time to run 
30 Mts. in September are continuous I took one of them at random. I just 
might also have taken Time to run 30 Mts. in September. Then I realized 
the variable has only one mode, the shape was very similar to the normal 
distribution, mean and median were similar. 

Teacher: Did you do any more analyses? 
Student: No, I just did those. 
 
A small number of students applied different elements of meaning, and carried 

out an analysis of each property. Seven percent of them produced a final synthesis, 
such as the following student. 
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Example 8 
“The variable Heartbeats after 30 press-ups is what I consider best fits a normal 
distribution. It is a numerical variable. The variable is symmetrical, since both the 
histogram and the frequency polygon (Figure 5) are approximately symmetrical. On 
the other hand the skewness coefficient is close to zero (0.0109) and standard 
skewness coefficient falls into the interval (–2, +2). We also observe that the kurtosis 
coefficient is close to zero (–0.1977) which suggests the variable can fit a normal 
distribution. 
Furthermore, we know that in normal distributions, mean median and mode coincide 
and in this case the three values are very close (Mean = 123.4; Mode = 120; Median 
= 122). Moreover there is only one mode. As for the rule 68,95,99.7 in the interval (µ 
– σ, µ + σ) � (105.08.141.82) there are 68.75% of the observations, in the interval 
(µ – 2σ, µ + 2σ) � (86.81,160.19) there is 95.84% and in the interval (µ – 3σ, µ + 
3σ) � (68.34,178.56) we found 100% of the data. These data are very close. 
Therefore you can fit a normal distribution to these data" (Student 8). 
 

 
Figure 5. Histogram and frequency polygon for Heartbeats after 30 press-ups. 

In this answer, the student relates the property of symmetry (concept) to the 
histogram and frequency polygon (representations). He is able to compute (action) 
the skewness and kurtosis coefficients (numerical summaries) and compares their 
values with those expected in normal distributions (properties and concepts). He 
also applies and relates the property of relative positions of central tendency 
measure and central intervals in a normal distribution, being able to operate the 
software (action) in order to produce the required graphs and summaries, which are 
correctly related and interpreted. This type of reasoning requires the integration of 
many different ideas and actions by the student. 

Other students provided incorrect variables, even when they were able to use the 
software and to correctly produce a great number of different graphs. In Example 9 
the student is able to plot different graphs and compute the quartiles. However, he is 
neither able to extract the information needed to assess normality from these graphs 
nor capable of relating the different results with the concepts behind them. No 
arguments linking these different representations or supporting his election are 
given. Moreover, he did not relate the high kurtosis coefficient to a lack of 
normality. The graphs and statistics produced are presented in Figure 6. 
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Example 9 
“I selected Height since the normal distribution is used to describe real data. And 
describing the students’ height is a real biological problem. This is also a quantitative 
variable and normal distribution describes quantitative variables” (Student 9). 
 

 
 
 
 

 
 
 
 
 
 
 
Stem-and-Leaf Display for HEIGHT: unit = 1.0   1|2 represents 12.0 
      2    13|88 
      6    14|0000      
     16    14|5566777799 
     40    15|000000002222223333444444 
    (28)   15|5555555566667777777788889999 
     28    16|0000001122222244 
     12    16|555577 
      6    17|11 
 
           HI|182,0 182,0 185,0 185,0 
 
Summary Statistics for Height:  Count = 96, Median = 155.5, Lower quartile = 151.0 
Upper quartile = 160.0, Stnd. skewness = 3.4341, Stnd. kurtosis = 4.46366  

Figure 6. Graphical representations and statistical summaries for Height. 

Discussion 

Many students grasped the idea of model, and showed a good understanding of 
the usefulness of models, density curves, and areas under the normal curve. Our 
analysis of the various actions, representations, concepts, properties, and arguments 
used by the students in solving the tasks suggests that many students were able to 
correctly identify many elements in the meaning of normal distribution and to relate 
one to another. Some examples are as follows: 

 
• Relating concepts and properties. For example, relating the idea of symmetry 

to skewness coefficient or to relative position of mean, median, and mode in 
Examples 6, 7, and 8. 

• Relating graphical representations to concepts. For example, relating the 
empirical histogram and density curve shapes to the theoretical pattern in a 
normal curve (e.g., in Example 8). 
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• Relating the various graphic representations and data summaries to the 
software options and menus they need to produce them (relating 
representations and actions in all the examples). 

• Relating the definition and properties of normal distribution to the actions 
needed to check the properties in an empirical data set (e.g., in Example 8). 

• There was a good understanding of the idea of mean and standard deviation 
and its relationship to the geometrical properties of the normal curve (e.g., 
Example 2). 

 
There was also a clear disagreement between the personal meaning of normal 

distribution acquired by the students and the meaning we tried to teach them. Here 
we describe the main difficulties observed: 

 
1. Perceiving the usefulness of theoretical models to describe empirical data. 

This is shown in the following transcript (Student 10): 
 

Teacher: Now that you know what the normal distribution is, can you tell me 
what it is useful for or in which way you can apply the normal 
distribution? 

Student: For comparing, isn’t it? For example to compare data and tables, it is 
difficult to explain. … You have some data and you can repeat with 
the computer what we did in the classroom. 

 
2. Interpreting areas in frequency histograms and computing areas in the cases 

when a change in the extremes of intervals is needed. This point is not 
specific to the normal distribution or to the use of computers, and the student 
should have learned it at the secondary school level. However, in the 
following interview transcript, the student is not aware of the effect of 
interval widths on the frequency represented, which is given by the area 
under the histogram (Student 10): 

 
Teacher: How would you find the frequency in the interval 0–10 in this 

histogram? 
Student: The frequency is 5, this is the rectangle height. 
Teacher: What about the frequency for the interval 10–30? 
Student: It is 10, that is the height of this rectangle. 

 
3. Interpreting probabilities under the normal curve. The graphical 

representation of the areas under the normal curve is the main didactic tool 
for students to understand the computation of probabilities under the curve 
and, at the same time to solve different problems involving the normal 
distribution. However, for some students with no previous instruction, this 
computation was not easily understood and performed. 

 
4. We also observed difficulties in discriminating between empirical data and 

mathematical models, interpreting some statistical summaries and graphs, 
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and a lack of analysis and synthesis ability to relate all these properties when 
making a decision (Student 11). 

 
Teacher: When you computed the median and quartiles in question 3, which 

data did you use: the theoretical normal distribution you fit to the data 
or the real data? 

Student: I … I am not very sure. Well, I used the data file … 
 
5. There was a great deal of difficulty in discriminating between the cases 

where a discrete quantitative variable can and cannot be fitted by a normal 
distribution (e.g., in Example 5) and even in distinguishing between the 
different types of variables. 

6. Other students misinterpreted the skewness coefficient or assumed that the 
equality of mean, median and mode was enough to show the symmetry of 
the distribution, accepted as normal a distribution with no horizontal 
asymptote, made a rough approximation when formally or informally 
checking the rule (µ – kσ, µ + kσ), accepted too many outliers in a normal 
distribution, or misinterpreted the values of kurtosis. 

 
Even when most of the students were able to change from the local to the global 

view of data (Ben-Zvi & Arcavi, 2001) in taking into account the shape of graphs as 
a whole, the idea of distribution as a property of a collective, and the variability of 
data, there is still a third level of statistical reasoning many of these students did not 
reach. This is the modeling viewpoint of data, where students need to deal at the 
same time with an empirical distribution as a whole (therefore, they need to adopt a 
global viewpoint of their data) and the mathematical model (the normal distribution 
in our research). In this modeling perspective, students need to concentrate on the 
different features of the data set as a whole and on the different features of the model 
(type of variable, unimodality, skewness, percentage of central cases, horizontal 
asymptote, etc., in our case). In addition to understanding the model as a complex 
entity with different components, they should be able to distinguish the model from 
the real data, to compare the real data to the model, and to make an accurate 
judgment about how well the model fits the data. 

There was also difficulty in using secondary menu options in the software—
which, however, are frequently essential in the analysis. Finally, the students 
showed scant argumentative capacity, in particular regarding analysis and synthesis 
(e.g., in Example 9). 

IMPLICATIONS FOR TEACHING NORMAL DISTRIBUTIONS 

The main conclusion in this study is that the normal distribution is a very 
complex idea that requires the integration and relation of many different statistical 
concepts and ideas. Recognizing this complexity, our work also suggests that it is 
possible to design teaching activities that facilitate the learning of basic notions 
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about normal distribution. Since the learning of computational abilities is no longer 
an important objective, an intuitive understanding about basic concepts is possible 
for students with moderate mathematical knowledge, whenever we choose 
appropriate tasks. 

Working with computer tools seemed to promote graphical understanding, as 
students in our experiment easily recognized and used many different plots (such as 
density curves, histograms, etc.) to solve the problems proposed. Moreover, they 
also showed a good understanding of many abstract properties, such as the effect of 
parameters on the density curve shape, and made extensive use of graphs as part of 
their argumentation. This suggests the essential role of computers to facilitate 
students’ exploration of these properties and representations. 

It is important that students understand basic concepts such as probability, 
density curve, spread and skewness, and histograms before they start the study of 
normal distribution; its understanding is based on these ideas. They should also be 
confident in the use of software before trying to solve problems related to the normal 
distribution, since they often misinterpret or confuse results from different software 
options. 

The student’s difficulties in discriminating between theoretical models and 
empirical data suggest that more activities linking real data with the normal model 
are needed. Simulating data from normal distributions and comparing them with real 
data sets might also be used as an intermediate step between mathematical model 
and reality. As a didactic tool it can serve to improve students’ probabilistic 
intuition, to teach them the different steps in the work of modeling (Dantal, 1997), 
and to help them discriminate between model and reality. Simulation experiences 
and dynamic visualization can contribute, as analyzed by Biehler (1991), to provide 
students with a stochastic experience difficult to reach in the real world. 

Finally, it is important to take into account the different components of meaning 
and understanding when assessing students’ learning. Computer-based assessment 
tasks in which students are asked to analyze simple data sets and provide a sound 
argument for their responses—such as those presented in this paper—are a good tool 
to provide a complete picture of students’ understanding and ways of reasoning. 
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